
NCN26010 Example Software Users Guide
Version 1.0.0

The NCN26010 device is an Ethernet Transceiver designed for industrial multi-drop Ethernet. It provides
all physical layer functions needed to transmit and receive data over a single unshielded twisted pair.
The example software provided by onsemi is designed to provide the necessary firmware and
application examples to help designers quickly integrate the NCN26010 into their systems.

Software Architecture
The provided software follows a modular design to allow the software to be quickly adapted to be used
with any microcontroller or to be used with various implementations of the TCP and IP layers of the
network stack. As illustrated below, the standard network stack consists of five layers: Physical (PHY),
Data Link (MAC), Network (IP), Transport (TCP), and Application. The NCN26010 provides a hardware
implementation of the MAC and PHY layers of the network stack. There are many existing open source
or proprietary implantations of the TCP and IP layers that a designer may choose from. The software
provided with the NCN26010 is designed to provide the connection between the IP and MAC layers of
the stack.

The provided software includes three required modules and one optional module. The required modules
include a module to handle interaction with the TCP/IP Implementation, a module to handle hardware
specific details, and the core driver module that configures the NCN26010 and handles errors. The
optional module handles interactions with the operating system to yield the CPU to other tasks when
not processing messages. If no OS module is provided the system defaults to call functions in the
hardware specific module to sleep the CPU until the NCN26010 signals data is available with an
interrupt. The interfaces for these modules are described in T1S_TCP-IP.h, T1S_Hardware.h,
NCN26010.h and T1S_OS.h, respectively.

The core driver module remains unchanged for any combination of hardware and TCP/IP
implementations. The hardware specific module and the TCP/IP modules are intended to be
implemented by the system designer to match their system. We provide the following example
implementations to support systems with the following hardware and TCP/IP implementations:

 Microcontroller
 Raspberry Pi

(Zero, 3B)
STM32
(L4xx)

RSL10

TC
P/

IP
 Linux TAP ✅

Lightweight IP (LwIP) ✅ ✅
FreeRTOS TCP-IP ✅ ✅

If other microcontrollers or TCP/IP implementations are required for the system, only the functions
defined in T1S_Hardware.h or T1S_TCP-IP.h need to be implemented.

Installing the software
Raspberry Pi
If you are using the NCN26010XMNEVK getting the system up and running is simple.

1. Install the latest version of Raspberry Pi OS onto a SD card as described at
https://www.raspberrypi.com/software/

2. Download and extract the Raspberry Pi NCN26010 software package on the raspberry pi. This
can be accomplished with the following command:
curl -o NCN26010Firmware.zip
“https://www.onsemi.com/pub/Collateral/EXAMPLE%20SOFTWARE:%20LINUX%20IMPLEMENTA
TION.ZIP” && \
unzip NCN26010Firmware.zip && \
rm NCN26010Firmware.zip

3. Move into the newly created directory
cd NCN26010_Example_Software

4. Run the install script and follow the prompts:
./install.sh

5. Execute the compiled program
sudo ./NCN26010_Driver

6. In a separate terminal test by pinging a device on the network (We recommend repeating these
steps with a second evaluation kit)
ping 192.1.1.1

https://www.raspberrypi.com/software/

STM32
Install STM32CubeIDE
Follow the instructions provided by ST Micro here:
https://www.st.com/resource/en/user_manual/um2563-stm32cubeide-installation-guide-
stmicroelectronics.pdf

Open the Configured Example
1. Under file, select “Open Projects from File System…”

2. Select Directory and navigate to the folder called onsemi_T1S

https://www.st.com/resource/en/user_manual/um2563-stm32cubeide-installation-guide-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2563-stm32cubeide-installation-guide-stmicroelectronics.pdf

3. Leave the default values and select finish.

Install the onsemi_T1S Software Pack

1. Double click onsemi_T1S.ioc, once the GUI loads select “Software Packs,” then Manage Software
Packs

2. Select “From Local…” then navigate to onsemi.onsemi_T1S.1.0.0.pack, and open it.

3. Read and Accept the License Agreement then close the manage dialog.

4. Then select “Software Packs” again but this time click “Select Components.” Navigate to
onsemi.onsemi_T1S, Network onsemi_T1S, then select either FreeRTOS or LwIP depending on
which TCP/IP implementation you would like to use.

5. Enable the onsemi_T1S software pack by selecting “Software Packs,” “onsemi_T1S,” then check

the box next to “Network onsemi T1S”

Setup FreeRTOS
If you selected the LwIP TCP/IP stack, you can skip this section.

1. Enable FreeRTOS under “Middleware” “FreeRTOS.” Then select “CMSIS_V2.”

2. In the FreeRTOS settings under “Config parameters”, adjust the heap size. We suggest 32K
bytes.

3. Under advanced settings Enable the FreeRTOS Reentrant mode.

Flash and/or Debug the Example
1. Save the Configuration and have the STM32CubeIDE generate code.

2. Ensure that your STM32L4xx evaluation board is connected to your computer, then Right click
the project, then select debug as, then select STM32 Cortex-M C/C++ Application

3. Wait for the build to complete and the hex to download to the board, then click play.

RSL10
Install Toolchain for Firmware Development

1. Register and Log in to MyON account here.
2. Download and install “ON Semiconductor IDE”.
3. Download and install base “RSL10 CMSIS Pack”.

a. To install the CMSIS pack open CMSIS Pack Manager. Click on the icon “Open Perspective”
as shown below and select “CMSIS Pack Manger”.

Figure 4. Open CMSIS Pack Manager

b. Click on the icon “Import Existing Packs…” to import the CMSIS pack downloaded earlier. Select
“Open” to install the pack.

Figure 5. Import Existing CMSIS Pack

4. Download and install latest version of “ARM CMSIS Pack” as per step 3.
5. Download and install latest version of “ARM CMSIS-FreeRTOS Pack” as per step 3.
6. Download and install latest version of “onsemi.RSL10T1S Pack”as per step 3.
7. Once all the packs are installed, this is what CMSIS pack perspective should look like.

https://www.onsemi.com/PowerSolutions/myon/registration.do
https://www.onsemi.com/pub/Collateral/ONSEMI%20IDE%20INSTALLER.ZIP
https://www.onsemi.com/pub/Collateral/RSL10%20SOFTWARE%20PACKAGE.ZIP
https://github.com/ARM-software/CMSIS_5/releases/latest
https://github.com/ARM-software/CMSIS-FreeRTOS/releases/latest
https://onsemi-my.sharepoint.com/personal/zbmgzd_onsemi_com/Documents/Microsoft%20Teams%20Chat%20Files/need%20new%20link

Figure 6. Installed CMSIS Packs

Import and Compile an Example Project from CMSIS Pack
1. Select RSL10T1S pack from CMSIS pack manager. Open the drop-down for “Examples”. Right-click on the

preferred example project. Select “Copy”. This will import a copy of that example project into the workspace.

Figure 7. Copy Example Project

2. Right-click on the project name in Project Explorer and select “Build Configurations” to “Release” or
“Debug”. Next, select “Build Project” to compile the project.

Figure 8. Set Build Configuration for a Project

Flash and/or Debug the Example
1. Create Run/Debug configuration for the project. Select “Run” -> “Run Configurations…”.

Figure 9. Open Run Configurations

2. Double-click on “GDB SEGGER J-Link Debugging”. This will generate a default configuration. Under “Main”
tab, select the Project. Provide the .elf file path at “C/C++ Application”. Depending on the build

configuration it can be “Release/<project_name.elf>” or “Debug/<project_name.elf>”. Or add a variable to
select automatically, “${config_name:${project_name}}/<project_name.elf>”. Select “Apply”.

Figure 10. Create Run Configuration

3. Under “Debugger” tab, Update “Device Name” to RSL10. Select “Apply” and “Close”.

Figure 11. Add Device name

4. To flash the board, click green play button looking icon in “Run” mode.

Figure 12. Run the configuration to Flash

5. To debug, click green bug looking icon in “Debug” mode.

Figure 13. Start Debug configuration

6. Detailed instructions about using the IDE can be found in RSL10 Getting Started Guide.

https://www.onsemi.com/pub/Collateral/RSL10%20GETTING%20STARTED%20GUIDE.PDF

Unimplemented Features
This example software is provided as a basic example to support designers to use the NCN26010 in their
system. There are several optimizations and additional features that onsemi has identified as potential
improvements to this software. onsemi may implement some of these features and will use feedback
from customers to determine how to prioritize features.

Zero Copy Data Transfer
As currently implemented, the example implementations copy data to and from buffers when
transferring from the NCN26010 over the SPI. With some pointer manipulation we could eliminate these
copies which saves memory and eliminates the CPU time required to copy the data. Implementing this
optimization may reduce system power requirements and may allow for a less expensive MCU to be
used.

Runtime Configuration
As currently implemented, all the configuration options are selected at compile time by adjusting macro
constants in the ncn26010.h header file. If the configuration needs to be changed after compile time this
must be done using the remote configuration options described in ncn26010.h. An option to read a file
or some piece of memory to decide how to configure the NCN26010 when initializing would simplify
software deployment on multiple nodes.

Serial Communication for Command Line Interface
As currently implemented, there are empty macros defined for printing debug and other information to
a console. Filling in these macros with functions that send this console information over a serial
interface to a host computer would help simplify debugging. It would also allow for a command line
interface to configure and communicate with the MCU.

Software Timestamping
The NCN26010 does not provide timestamps for incoming frames. Certain time sensitive messages
require an accurate understanding of when the message arrived. The NCN26010 can be configured to
signal on its DIO pins when it detects a start of frame delimiter. Triggering an interrupt on this signal and
recording a timestamp would allow a software algorithm to pair together messages with their
associated timestamp.

Documentation
The software package is documented in the source using Doxygen style comments. The generated
documentation is distributed as part of the software package.

	Software Architecture
	Installing the software
	Raspberry Pi
	STM32
	Install STM32CubeIDE
	Open the Configured Example
	Install the onsemi_T1S Software Pack
	Setup FreeRTOS
	Flash and/or Debug the Example

	RSL10
	Install Toolchain for Firmware Development
	Import and Compile an Example Project from CMSIS Pack
	Flash and/or Debug the Example

	Unimplemented Features
	Zero Copy Data Transfer
	Runtime Configuration
	Serial Communication for Command Line Interface
	Software Timestamping

	Documentation

